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OF THE BENDING PROBLEM OF A CIRCULAR PLATE 

A FREE EDGE BY USING PAIRED EQUATIONS* 

A.A. SAMODUROV and A.S. TIKHOMIROV 

Used in the investigationofthebending of a plate with a free edge is a method 
including the solution of non-standard paired equations that are trigonometric ser- 
ies, which results in a quasi-completely-regular system of linear algebraic equa- 
tions. The nature of the plate state of stress and strain is investigated. One 
of the methods reducing to the solution of paired summation equations is elucidated 
in /l/ in application to the problem under consideration. A combination of support 
and clamping is examined in the majority of papers while the case of the free edge 
is inadequately studied. 

Let us examine a thin circular plate of radius a and thickness h which is loadedatthe 
center of a circle of radius b by a uniformly distributed load of intensity p. Part of the 
plate outline is load-free within the angle %,, while the rest is hinge supported (Fig.1). 

It is expedient to represent the solution of the initial problem in the form of a sum of 
two solutions wC = w(l) + w@) is the dispalcements, and Uikc = U#) + Q@) in the stresses. 

The first problem corresponds to the model of a plate with 
total support along the outline and the load shown in Fig.1, its 

m 

solution is known in the literature /2/. The second problem 
contains the same plate with the contour conditions displayed 
in Fig.1, but with the load equal numerically to the support 
reaction p in the first problem but directed oppositely, to 

the free edge outline. (In this case g = p .(nb2/2na) is the in- 
tensity of the uniformly distributed load). Therefore, the 
solution of the initial problem reduces substantially to an anal- 
ysis of the second problem, whose boundary conditions for r = a 
are 

M,(2) = 0, o<.e<n (1) 
Q(z) 1 dM,t 

r -T ae 
-=P, OO,<e&&l 

&9 z 0, &3<09n. 

Fig.1 
Here r, 6 are the running coordinates, w@) is the displacement, 

QP’ is the transverse force, and M,@),M,t(*)are the bending 
moment and torque, respectively. 

In connection with the symmetric arrangement of the plate relative to the origin of the 
angle 8 we consider half of it, and we seek the solution in terms of the deflection function 
wW(r, 9) in the form of a cosine series satisfying the equilibrium equation in polar coordin- 
ates VVW@) = 0 

On the basis of discussions analogous to those presented in /l/, we obtain the function 
m 

w(z) (p, 0) = x (A,*$ + B,*p*+z) an cos ne, p+ 
n==o 

in whose terms the fundamental components Mr(a), lMJe), Q,(3 , etc. , are expressed /2/, where 
A,*, B,* are unknown coefficients. The relationship between the coefficients A,*and B,* is 
found from the first boundary condition. Furthermore, satisfaction of the second and third 
conditions results in a system of paired summation equations which must be solved for the 
unknowns A,. Introducing new unknowns, we write this system in the form (E,v are the Young’s 

modulus and Poisson's ratio of the plate material) 
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I&* cos&=-A+,-Azcos0, &,<9<n 

A 
n (n - 1) (4 - Y) 

n n =A +an ~-(n+1)[(n+2)-v((n-2)] 1 I A 

A= 

Therefore, the problem is to seek the unknowns A, from the system of paired s~ationequations 
(2). 

Compared to the solutions examined earlier(/13-66/, etc.) for the paired summation equa- 
tions with trigonometric base functions, this problem has a number of singularities: the de- 
grees of the polynomials in n in the equations of the system are distinguished by a quantity 
greater than one: the first two term are missing in one of the series in the system. Hence, 
the approach to the solution of the system (2) requires special consideration. 

We differentiate the second equation of the system (2) thrice and we write the system 
obtained in the form 

m 

x D, sinnB= 41 D,,(i -(p,JsinnB-Tsine, e,<e,<n 
n-2 VI==9 

As n--t~ the quantity (1 - cp,) decreases no worse than O(l/n),as is necessary for quasi- 
complete-regularity of the system (see below). In order to reduce the left sides of the equa- 
tions in the system (3) to identical form, we multiply the first equation of (3) by Cos(8!2) 
(co9 8 -Cost)+, and then integrate with respect to 8 between 0 and t; we multiplythesecond 
equation by cos (e/2) (GUS t- cost?)-lfd and integrate with respect to @between t and s (this method 
is described in more detail in /7/). After manipulation, we obtain (P,(t) are Legendre poly- 
nomials) 

Yn - P,-l (co9 t} + P, (cos t) 

F (t) = + s co5 (e/z) lie 
o I/case-cm 

We reduce the system (4) obtained to an infinite system of linear algebraic equations 

%f = (1 - $4 + z,i (Bo), Bn = A’ - + zn, (eo) 

f3*‘2’ s WY&+, Lf @I= fWi tl3 +-fit, i=2,3,4,... 
0 x 

(5) 

An unknown quantity is present in the free part of the system (5), and which we find, as 
we do A,, from the boundary conditions ontheoutline (r = a) 

I 
w=o(t=x), w&130 

. 
We obtain 
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(6) 

OJ 

A,=A%- 
z 

D,,’ $- (- l)” 
n-e3 n 

Now, if the index of summation n is changed to i in the first expansion of (61, A, is sub- 
stituted in the free term of the system (51, and then the general term of the expansionAland 
the kernel of the system are combined, we then obtain a system of the following form: 

(7) 

Investigation of this system for regularity, analogously to that performed in /7/, shows 
that it is quasi-completely-regular. 

The solution of (7) in the unknownsD,'was performed by the Gauss method. For this, the 
degeneracy of the coefficient matrix was estimated, which displayed the good conditionalityof 
the system. Up to 150 unknown terms of the system were kept in the computations, and satis- 
faction of the boundary conditions of the problem was assured to 2% accuracy. This error 
evidently diminshes when ccmputing the stress tensor and displacement vector components at 
remote points from the outline. 

Dependence of the radial (a$*)) and circumferential (@) components of the stress com- 
ponents on p are depicted in Fig.2 (solid and dashed lines, respectively) for B,,= 20" and 
different values of the angle 6, where 

(a!“) = -& (M,) = $f& , (UP’> =& (Mt) =z, 3Pa 
X=na(3 

au 

The influence of the magnitude of the free edge on the 
natures of the plate state of stress and strain is of interest 
in an analysis of the initial problem. The appropriate esti- 
mate can be found from the following relations 

K,= 
by (1. = 0, e = 0) 

K,= lo@) (r = 0, e = 0) 
@(rzo) ’ w(1) (1. = 0) 

Fig.2 

This estimate yields a representation of the stress rela- 
tions at the center of the plate for the two problems mentioned. 
Values of K,,, and K, are presented below for b/a = 0.015; also 
shown is the nature of the change in the reduced coefficient 
A, =A,* A as a function of the angle B. (this coefficient 
characterizes the magnitude of the deflection at the center of 
the plate p =O) 

00, deg. 10 20 30 40 
K,.W 151 667 1593 2931 

K,.iO' 24 101 217 359 
A0 0.02 0.06 0.14 0.20 

The proposed method of solution can even be extended to the case of arbitrary loading; 
the principle of constructing the solution remains as before. 
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